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Overview / Learning Objectives

1. How does/can Al contribute to wearable technologies
and physiological monitoring?

2. What roles does/will Al play in Hospital at Home"?

3. How can Al be used for optimizing medical therapeutics?
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Role of Al for Wearable Technologies and
Physiological Monitoring
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Wearable Technologies and Physiological Monitoring

(&)

Increasing Amounts of Health Care-related Data

* Over 23% of the U.S. population wore a smart wearable in
2021 according to eMarketer

* Wireless clinical grade wearables
* Eases monitoring in H@H and acute care settings
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Wearable Health Systems Overview
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Intermittent vs. Continuous monitoring
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Care teams have traditionally had to Couny
Real-time remote monitoring rely on physical markers, such as weight, ! SEmart phones
shows changes in pulmonary artery blood pressure and symptoms. , Hospnaﬂzaﬂon
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Pre-symptomatic detection of COVID-19 from
smartwatch data .
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Article | Open Access | Published: 23 February 2021

Observational study on wearable biosensors and

machine learning-based remote monitoring of COVID- .
19 patients 5
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Everion® °

Everion® combines medical grade data with outstanding user experience &
comfort: :
= CE-Marked, and HSA approved Medical Device

= No buttons, no cables, no tape, and no calibration

= Collects real time data, continuously and non-invasively
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RESEARCH ARTICLE
Glucotypes reveal new patterns of glucose
dysregulation

10

Heather Hall''2®, Dalia Perelman®®, Alessandra Breschi*, Patricia Limcaoco?,
Ryan Kellogg?, Tracey McLaughlin®, Michael Snyder®*
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Article | Open Access | Published: 21 December 2021

Predicting changes in glycemic control among adults
with prediabetes from activity patterns collected by
wearable devices
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Fig. 3: Prediction of hemoglobin A1c worsening.
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ORIGINAL ARTICLE

Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation

Marco V. Perez, M.D., Kenneth W. Mahaffey, M.D., Haley Hedlin, Ph.D., John S. Rumsfeld, M.D., Ph.D., Ariadna Garcia, M.S., Todd Ferris, M.D., Vidhya Balasubramanian, M.S.,
Andrea M. Russo, M.D., Amol Rajmane, M.D., Lauren Cheung, M.D., Grace Hung, M.S., Justin Lee, M.P.H., et al., for the Apple Heart Study Investigators®

No. of Patients with
Subgroup  AF/Total No. (%)
Overall 153/450 (34) — —
Age
65 yr 63/181 (35) —e—ri
55-64 yr 47/114 (41) —_
40-54 yr 34/106 (32) ——
22-39 yr 9/49 (18) e
Sex
Female 26/102 (25) —e—
Male 124/335 (37) —e—i
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Role of Al for Hospital at Home
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Hospital at Home Care During COVID-19 Pandemic

* Increase available hospital staff and
resources for critical acute care (e.g.
COVID-19 patients during surges in
the pandemic)

* Figure from pilot study, now
available at hundreds of
hospitals

* Cost of care significantly reduced
compared to in-hospital costs

* Quality of patient outcomes better or
similar to traditional hospital care

* Increased mobility of patients at
home compared to in hospital setting
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Sample Hospital at Home Patient Journey i

Admission day Home hospital day 1 Home hospitalday 2 - Discharge day
: TIMING OF STAY
Time to Discharge Unplanned 30-day
Prediction Readmission Prediction
SAMPLE ADMISSION Sample Time to Sample Time to SAMPLE READMISSION
REPORT Discharge Prediction Discharge Prediction PREDICTION
REPORT

Length of Stay Probability of Probability of
Prediction Discharge w/in 48hrs Discharge w/in 48hrs Risk of Readmission
> 5 Days Low Low Low

High Comorbidity ) o _
Score Continuous Monitoring with

Biovitals Index, Smart Alerts and Rhythm Analytics No l_ndication of.
Increasing Weight Anxiety/Depression

Sample Continuous Monitoring Report with alert :Igh .COV::ance
notifications ctivity/

High Activity Level

Day 1 at 9:30 am: "Biovitals Index is high"
Day 1 at 12:30 pm: "Blood oxygen saturation below 90% for 15 min"
Day 2 at 3:00 am: "Sinus Tachycardia"
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Application of Machine Learning Techniques in 16
Hospital at Home

Model Types Sample Techniques Sample Use Cases
Classification CNN Arrhythmia interpretation
Logistic regression Heart failure subtype classification
SVM COPD severity classification
Sleep apnea severity estimation
Time series forecasting LSTM Disease severity and disease
Neural networks progression prediction

Time-series regression

Clustering / Pattern recognition Gaussian mixture models Activity and vitals pattern learning
K-means
Anomaly detection K-nearest neighbors Continuous risk score generation
One-class SVM Clinical decompensation prediction
Natural language processing Latent Dirichlet Allocation Clinician note interpretation
RNN Depression/anxiety detection
LSTM EHR parsing
AMERICAN
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Role of Al for Hospital at Home (Example: ECG)

LHF‘H

Preprocessed ecg signal

BatchNorm

Rapld ECG arrhythmia interpretation
Assisting clinician in interpreting long term ECG

* Reduce workload of clinician by deprioritise noise and focus only on important
arrhythmia only

+ Beneficial to patient because it allows to capture real time arrhythmia instead of
single spot check

Auto measurement of QTc interval

* Allowing detection of sudden QTc prolongation from patient.

« Allowing new biomarker research of how QTc interval changes throughout patient
journey

« Assisting clinician to diagnose patient with new real time event

Estimation of electrolyte abnormalities ( K+ estimation from ECG)
* Allowing real time alert of abnormal lab value

*  Assisting clinician by providing extra evidence of lab value

»  Alert hyperkalaemia / hypokalaemia

AMERICAN
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On Arrhythmia Detection by Deep Learning and Multidimensional

Representation
F1 scores Confusion matrix .
Sinu

Biofourmis’ Model  Model(49) Model(50) Cardiologists ' .- 08
Normal Sinus Rhythm 0.924 0.932 0.951 0911 -
Aurial Fibrillation 0.838 0.697 0.752 0.724 vose | B ‘”
Sinus Tachycardia 0.824 0.794 0.741 0.806 s
Sinus Bradycardia 0.847 0.853 0.818 0.827 e .
Ventricular Bigeminy 0.872 0.882 0.759 0.803 J vie . o3
Ventricular Trigeminy 0.880 0.855 0.731 0.780 =
Ventricular Tachycardia 0.746 0.713 0.689 0.784 £ = . os
PSVT 0.716 0.618 0.602 0.654 - .
Noise 0.779 0.707 0.632 0.713
VEB 0.909 0.872 0.824 0.834 ST
Summary Results v . Lol
Specificity 0.982 0.973 0.935 0.952 w8 .
Sensitivity 0.908 0.887 0.842 0.860 PP Y YV S S S S L Lo
FI 0.834 0.792 0.749 0.784 ’ il e
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Role of Al for Optimizing Medical Therapeutics
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Al for Optimizing Medical Therapeutics

Existing Gap between Therapeutics
Guidelines and Clinical Practice

B Awareness / ~
Edlcaton || Reasons for Treatment Gap
o = . Contraindication
Guidelines B Patient Side effects
Intolerance
o B _,' Noncompliance
ar- |u| Comorbidities
Sl—t
Cost / Coverage <k Provider Inertia / Aversion
Aligned with =L Knowledge gap
Care Benefit | Complex up-titration protocols
] Inadequate follow-up
. = 4 Inadequate care coordination
Interventions =
Aligned with ™ System/ Payer Incorrect data collection
Evidence-Based = Inadequate risk adjustment
Performance /' Payer coverage gap
Measures High cost

Inadequate access

oYM TSI ANESY VR |
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Al Optimized Therapeutics: Reduce the Gap
and Optimize Outcome (Engagement, Tailored
& Specific titration recommendations)
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Al for Optimizing Medical Therapeutics (Example)

« Limited to recommendations of initiations and up-titrations of GDMT
*  Drug recommendations are based on AHA guidelines and expert inputs

» Decisions to increase the dosage of GDMT or start HF medications will
ultimately be made by the treating cardiologist, or qualified designated
HCP_ ACEI/ARB/ARNI

Switch from Enalapril 2.5 mg BID to
Sacubitril/Valsartan 24/26 mg BID

Medications

Last updated: Today, 7:20PM
Titration recommendations @

e.g., Titration Algorithm Example

Decline recommendation

e No

Beta-Blocker
Yes AN{)
GDMT
SBP > 100 SaR=100
&HR > 60

Increase 1. Switch to equivalent dose of Carvedilol

2. Switch to equi dose of |

Beta blockers

Yes /SBP > 100 & <=120\\ N0 Initiate Carvedilol 3.125 mg BID

&HR > 60
SBP > 120
&HR>60

1. Initiate Carvedilol Level 1 Decline recommendation
2. Initiate Carvedilol Level 2

Initiate Carvedilol 6.25 mg BID

Yes,

[ 1. Initiate Carvedilol Level 1 Initiate Metoprolol Succinate 12.5 mg QD

2. Initiate Metoprolol Succinate Level 1 ]

Initiate Metoprolol Succinate 25 mg QD

3. Initiate Metoprolol Succinate Level 1

4. Initiate Metoprolol Succinate Level 2 _
AMERICAN [ Maintain: HR > 60 & SBP <= 100 J
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GDMT Optimization — Preliminary Evidence

Beia Blocker 50.0%

Puooa
. P=0.005

= N=~30 participated in a run-in phase of a larger RCT

40.0%
= Objective: To determine whether a remote, software algorithm- ]
driven, medication optimization program can enhance soond
implementation of GDMT in HFrEF. .
decrease demease increase

= Patients were onboarded to the BiovitalsHF platform with surveillance
of laboratories, physiology, and symptoms and recommendations o%- S o o e R

Baseline  Day 90 Baseline  Day 90 Baseline  Day 90

Percent of patients

Percent of patients

220-point - 210-point 5ponl <5-point 5pa L M0pot 2204 -point

made to the clinical team for approval of titration Changes in KGCQ-0S Score

recommendation.
Percentage of target dose
« Results': l>100 Ws0-99 1149 0
= At 3 months, patients on the BiovitalsHF platform experienced - : " _}4%:
significant increase from baseline in utilization of all .]11%
categories of GDMT (p<0.05). ” =0 - 37%
= The proportion of patients advanced to target doses of % o 70%
GDMT was also higher at 3 months as compared to historical <
controls/ registry data. (p<0.05) )
c 40
= At 3 months, patients on Biovitals-HF platform experience g
statistically significant and clinically meaningful 20 ]
improvement in KCCQ-0S. -

OACEi/ARB/ARNI ACEI/ARB/ARNI  B-Blocker use  B-Blocker use ~ MRAuse at MRA use at 3 mo
use at baseline  use at 3 mo at baseline at3 mo baseline
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Biofourmis receives FDA breakthrough
device designation for heart failure “digital
therapy”
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